Award Winners

The winner teams of the m4 Award 2017

m4 Award 2017

Prof. Dr. Anja Bosserhoff
Prof. Dr. Claus Hellerbrand
Friedrich-Alexander-Universität Erlangen-Nürnberg

Development of an orally administered inhibitor for the therapy of malignant melanoma

The melanoma (black skin cancer) is the most frequently fatal skin disease with a worldwide increasing number of incidences. The protein MIA promotes dangerous melanoma metastasis and prevents the immune system from fighting the tumor. Prof. Bosserhoff and Prof. Hellerbrand were able to reveal the mechanism of the MIA effect on the melanoma cells and to develop substances with which MIA can be inhibited. Such peptide-based, intravenously administered substances already had a significant effect in the mouse model. Now the researchers aim to develop orally available small molecules, for example in the form of a tablet. Thus they want to provide melanoma patients with a highly specific, effective and compatible therapy at the same time.


Prof. Dr. Matthias Mack
Dr. Kerstin Renner
Universitätsklinikum Regensburg

Depletion of proinflammatory monocytes for the treatment of acute exacerbations of multiple sclerosis (MS)

About 2.5 million people worldwide live with multiple sclerosis. Up to 90% of the patients suffer from a type of the autoimmune disease with acute exacerbations. For the treatment of the inflammatory reactions due to an attack, mainly highly dosed steroids such as cortisone are available, to which about 40 percent of the patients are not adequately responsive and therefore cause accumulating damage. Therefore Prof. Mack and Dr. Renners follow the approach of a combination of steroids and a humanized antibody. The antibody is directed against so-called monocytes, which carry the surface protein CCR2. These immune cells, which are responsible for tissue destruction, are to be removed by antibody therapy for a short period in order to keep the cerebral tissue damage at MS exacerbations low. With the funding, the team will investigate the synergistic effects of steroids and CCR2 antibodies in preclinical studies.


Dr. Valentin Bruttel
Prof. Dr. Jörg Wischhusen
Universitätsklinikum Würzburg

Targeted inhibition of autoimmune reactions in neuroinflammatory diseases by AutoImmunity Modifying Biologicals (AIM Biologicals)

About 5-10% of the population of Western industries suffer from autoimmune diseases. Here, the immune system is directed against the body by an overreaction. However, current therapies suppress not only these harmful immunoreactions, but also protective ones against e.g. pathogens or tumor cells. This leads to severe side effects, which are not observed during pregnancy, although also here immune reactions have to be suppressed against the tissue of the embryo which is partly derived from the father. In the working group of Prof. Wischhusen at the University Hospital in Würzburg, Dr. Bruttel has discovered a novel mechanism, which, in pilot experiments, allows exactly such a targeted and effective suppression of individual immune reactions. Based on this, the platform technology AIM Biologicals was developed, which is now to be adapted and thoroughly tested within the context of the m4 Award promotion for neuroinflammatory autoimmune diseases such as multiple sclerosis (MS) or neuromyelitis Optica (NMO). Bruttel and his colleagues have set themselves the goal of developing drugs which can be administered easily but nevertheless stop harmful autoimmune reactions very targeted and with low side effects. 


Dr. Marcus Conrad
Dr. Bettina Proneth
Helmholtz Zentrum München

Development of innovative ferroptosis inducers for stratified cancer therapy

For the development and maintenance of multicellular organisms, it is essential to kill individual cells in a targeted manner. This is the only way to achieve a balance between cell growth and cell death. One form of regulated cell death is ferroptosis. Conrad and colleagues utilize this mechanism to destroy targeted tumor cells. The researchers have shown that the fatty acid metabolism enzyme ACSL4 plays a central role in ferroptosis. Cells carrying this enzyme are sensitive to cell death regulation. There is no targeted treatment of a particular form of breast carcinoma, the most common cancer in women - these patients have the worst survival outcomes. However, the enzyme ACSL4 is found in the tumor cells of this breast cancer form. The project aims to find ferroptosis triggering substances by means of a newly established screening platform and to further develop these for testing in relevant tumor models.


Dr. Jonas Helma-Smets
Dr. Dominik Schumacher
Prof. Dr. Heinrich Leonhardt
Prof. Dr. Christian Hackenberger
Ludwig-Maximilians-Universität München

Tubulis Therapeutics - next-generation antibody drug conjugates (ADCs) (akronym Tubulis)

The classical cancer treatment with chemotherapy and/or irradiation brings many side effects, as the means generally nonspecifically affect the whole body. Targeted tumor therapy, on the other hand, tries to kill only cancer cells. Widely considered a major new hope are antibody-drug conjugates (ADC), which consist of three components: the antibody targeting a specific protein which is preferably only present on the tumor cell, a cell toxin that is to attack the tumor as well as the so-called "linker", which connects the other two components. This linker is particularly important because it ensures that the active substance is released only after binding to the tumor cell. By its proprietary technologies the research team at the LMU Munich and the FMP Berlin is developing a kind of molecular glue for the stable attachment of the toxins and thus the production of effective and compatible ADC at the same time. Within the scope of the m4 Award, a first own ADC for the treatment of acute myeloid leukemia (AML) is to be tested preclinically.



Dr. Petra Burgstaller
Dr. Petra Burgstaller

Senior Manager Start-Ups & Funding


Christina Enke-Stolle
Christina Enke-Stolle

Senior Manager Start-Ups & Funding