Nachrichten

Aus der Forschung: Neuer Mechanismus in der Regulation menschlicher Gene aufgeklärt

Gemeinsame Arbeiten von Wissenschaftlern des Helmholtz Zentrums München und der Technischen Universität München (TUM) mit Kollegen vom European Molecular Biology Laboratory (EMBL) in Heidelberg und dem Center for Genomic Regulation in Barcelona.

Um ein Protein zu bilden, muss das codierende Gen in RNA umgeschrieben und beim sog. Spleißen* zur korrekten Matrize verkürzt werden – Wissenschaftler des Helmholtz Zentrums München und der Technischen Universität München haben jetzt aufgedeckt, wie das Protein U2AF diesen Prozess ermöglicht. Die Ergebnisse sind in der aktuellen Ausgabe der renommierten Fachzeitschrift Nature veröffentlicht.


Wissenschaftler des Helmholtz Zentrums München und der Technischen Universität München (TUM) haben gemeinsam mit Kollegen vom European Molecular Biology Laboratory (EMBL) in Heidelberg und dem Center for Genomic Regulation in Barcelona aufgedeckt, wie das Protein U2AF das Spleißen* der prä-mRNA* zur mRNA* ermöglicht, die als Matrize für die Proteinsynthese im Körper dient.

Spleißen erfordert die Zusammenarbeit verschiedener Proteine, Spleißfaktoren. Ein solcher Spleißfaktor, U2AF, wurde von den Münchner Wissenschaftlern untersucht. Er besteht aus zwei strukturellen Modulen und bindet nahe der Schnittstelle zwischen Intron* und Exon* an die RNA. Prof. Dr. Michael Sattler, Direktor des Instituts für Strukturbiologie am Helmholtz Zentrum München und Professor für biomolekulare NMR Spektroskopie an der TUM, fasst zusammen, wie U2AF zum Spleißen beiträgt: „Die Raumstruktur des U2AF Proteins wechselt zwischen einer geschlossenen und einer offenen Form. Eine passende RNA-Sequenz im Intron bewirkt, dass U2AF die offene Form einnimmt, die das Spleißen aktiviert und zum Ausschneiden des Introns führt.“ Die RNA-Sequenz des Introns bestimmt dabei, wie effektiv diese Konformationsänderung ausgelöst werden kann. Die Verschiebung des Gleichgewichtes zwischen der geschlossenen und offenen Form des U2AF Protein findet durch Selektion der offenen Form statt, die in geringem Masse schon ohne Gegenwart der RNA existiert (Konformationsselektion). Die Wissenschaftler vermuten, dass ähnliche Mechanismen der Verschiebung eines Gleichgewichts zwischen einer geschlossenen, inaktiven und einer offenen, aktiven Konformation, eine wichtige Rolle für die Regulation vieler anderer Signalwege in der Zelle einnehme.


Hintergrund

Die Gene im menschlichen Genom liegen in einer besonderen Struktur vor: Es wechseln sich Abschnitte mit relevanten (Exons) und solche mit irrelevanten Informationen (Introns) ab. Um ein Protein herzustellen, wird von der genetischen Information (DNA) zunächst die prä-mRNA abgeschrieben. Aus dieser werden beim sog. Spleißen die Introns entfernt: Ergebnis ist die mRNA, die nur noch aus Exons besteht. Bei diesem Prozess müssen die Introns erkannt und akkurat ausgeschnitten werden. Spleißen ist ein essentieller Schritt im zentralen Dogma der Molekularbiologie, das besagt, dass der Informationsfluss von der Erbsubstanz DNA über RNA zum Protein verläuft.


*Spleißen / Exons / Introns / (prä-)mRNA: Exons sind diejenigen DNA-Abschnitte mit relevanten Informationen für ein bestimmtes Protein. Die zwischen den Exons liegenden Introns werden beim Spleißen entfernt, aus der prä-mRNA entsteht so die mRNA.

 
Original-Publikation:

Mackereth, C.D. et al. (2011) Multi-domain conformational selection underlies premRNA splicing regulation by U2AF, Nature; Doi 10.1038/nature10171


 

Quelle: Helmholtz Zentrum München, Technische Universität München (TUM)