Nachrichten

3 ERC-Grants gehen an die LMU

Die LMU-Professoren Peter Becker (Adolf Butenandt Institut, Lehrstuhl für Molekularbiologie), Roland Beckmann (Genzentrum und Department für Biochemie) und Hermann Gaub (Lehrstuhl für Angewandte Physik und Center for NanoScience) werden vom Europäischen Forschungsrat (ERC) mit einem Advanced Investigator Grant ausgezeichnet. ERC Advanced Grants sind mit bis zu 2,5 Millionen Euro dotierte Auszeichnungen für europäische Forscher, die bereits herausragende Leistungen erbracht haben und für neue hoch innovative Forschungsvorhaben die nötigen Freiheiten erhalten sollen.

So unterschiedlich die Bereiche der drei Forscher (im Bild von links nach rechts wie im Text aufgeführt) erscheinen mögen - von den Geschlechtschromosomen der Taufliege Drosophila, über die Proteinstruktur von Ribosomen bis hin zur Herstellung bestimmter Enzyme für den Bereich Biokraftstoffe - so durchaus verwandt sind sie bei näherem Hinsehen.

Das Projekt von Peter Becker
In der Natur sind bei vielen Lebewesen die Geschlechtschromosomen ungleich verteilt. So auch bei der Taufliege Drosophila: Die Weibchen verfügen über zwei X-Chromosomen, während die Männchen mit einem einzigen X-Chromosom auskommen müssen. Auf dem X-Chromosom liegen allerdings zahlreiche Gene, in denen die Baupläne für Proteine festgelegt sind. Damit Männchen diese Proteine trotzdem in derselben Menge zur Verfügung haben wie Weibchen, müssen sie diesen Mangel mit einem Trick ausgleichen: Dank der so genannten Dosis-Kompensation werden alle Gene auf dem X-Chromosom doppelt aktiviert. Peter Becker untersucht mit seinem Team, welche Schritte ablaufen müssen, damit dieser für die Männchen lebenswichtige Prozess funktioniert. Insbesondere interessieren sich die Wissenschaftler für den sogenannten "dosage compensation complex" (DCC): Dieser Komplex besteht aus Proteinen und zwei nicht-kodierenden RNAs und ist an der Steuerung der Genaktivität entscheidend beteiligt. Becker will untersuchen, wie der DCC-Komplex gebildet wird, auf welche Weise er das X-Chromosom von anderen Chromosomen unterscheidet, und wie er schließlich an verschiedene Elemente auf dem X-Chromosom bindet. Eine Hauptrolle scheinen dabei die beiden RNAs zu spielen: „Deshalb werden wir unter anderem ihre Struktur näher untersuchen und ihre Bindungsstellen an die Protein-Untereinheiten identifizieren“, sagt Becker.

Das Projekt von Roland Beckmann
Ribosomen sind die Proteinfabriken der Zelle. Wie am Fließband werden in diesen großen Molekülkomplexen Tausende von Bausteinen zu Proteinen zusammengesetzt. Beckmanns Arbeitsgruppe beschäftigt sich mit der Aufklärung von Struktur und Funktion dieser komplexen Zellmaschinerie. Hierfür machen die Wissenschaftler die fragile Architektur der Ribosomen mithilfe der Kryo-Elektronenmikroskopie sichtbar und untersuchen Strukturänderungen in verschiedenen Stadien der Proteinproduktion. Das vom ERC geförderte Projekt beinhaltet sowohl technische als auch biologische Aspekte: Beckmanns Team will zunächst eine neue Technologie entwickeln, die es erlaubt, biologische Strukturen viel feiner aufgelöst als bislang zu erkennen.

Das Projekt von Hermann Gaub
Biokraftstoffe aus nachwachsenden Rohstoffen können eine klimaverträgliche Alternative zu fossilen Brennstoffen darstellen und werden in der Zukunft als Energiequelle immer wichtiger werden. Organische Abfälle oder Holz als Grundstoff für die Energiegewinnung haben den Vorteil, dass ihr Anbau nicht unmittelbar mit der Nahrungsmittelproduktion konkurriert. Allerdings enthalten sie viel sogenannte Lignocellulose, die enzymatisch nur schwer aufgespalten und abgebaut werden kann. Daher ist das entscheidende Problem die Umwandlung der Lignocellulose in Polysaccharide, die für die Kraftstoffproduktion nutzbar sind. Bisher können nur bestimmte Bakterien und einige Pilze Lignocellulose unter Umweltbedingungen abbauen, unter Industriebedingungen erfordert dieser Prozess aufwendige und für die Umwelt bedenkliche Produktionsschritte. Der Biophysiker Hermann Gaub plant nun, in seinem Projekt maßgeschneiderte Enzyme zu designen, die Lignocellulose effektiv abbauen können. Mit einem Rasterkraftmikroskop kann Gaub Moleküle aufnehmen und nanometergenau an einer bestimmten Stelle wieder absetzen. Diese Technik will er mit seinem Team nutzen, um Lignocellulose-abbauende Enzyme verschiedener Spezies auf einem Chip als Montagefläche zu platzieren und mit Nanokatalysatoren zu kombinieren - im Ergebnis erhalten die Wissenschaftler künstliche Molekülkomplexe, deren Effektivität sie mithilfe von Fluoreszenzmessungen überprüfen können. „Der Chip ermöglicht biologische Prozesse, die sonst nur in lebenden Zellen ablaufen können“, sagt Gaub. Ziel der Wissenschaftler ist es letztlich, die effektivste Kombination aus Enzymen und Nanokatalysatoren zu finden, die sich für den industriellen Einsatz eignen könnte.

Struktur ist alles - und ohne Struktur alles nichts

Alle Forschungsarbeiten wollen also ganz genau hinschauen und ergründen, wie eine atomare Struktur der Moleküle bestimmte Funktionsweisen des ganzen Organismus beeinflussen oder steuern. Doch beim Hinschauen soll es nicht bleiben, mit dem Verständnis der Rolle einzelner atomarer Bestandteile in ganzen Prozessketten kann daraus eine eigene Anwendung erwachsen - wie sich das im Fall der Forschungen von Prof. Gaub ergeben mag.

Nähere Informationen und Kontakte unter den Informationsseiten der LMU:

http://www.uni-muenchen.de/einrichtungen/zuv/uebersicht/komm_presse/verteiler/presseinformationen/2011/f-87-11.html