Nachrichten

Aus der Forschung am Genzentrum: Strukturaufklärung bei DNA-Schädigung

Doppelstrangbrüche gehören zu den gefährlichsten Schäden am Erbmolekül DNA. Sie entstehen etwa durch Strahlung oder Umweltgifte und können Krebs oder auch neurodegenerative Erkrankungen wie das sogenannte AT-artige Syndrom (ATLD, AT-like disease) auslösen. Effiziente Reparaturmechanismen sind daher für die Zelle essenziell. Ein wichtiger zellulärer Reparaturfaktor ist der sogenannte MRN-Komplex, dessen Struktur nun von einem Team um Professor Karl-Peter Hopfner vom Genzentrum der LMU aufgeklärt werden konnte.

Die Abbildung (Quelle: Prof. Hopfner) zeigt die Bestandteile dieses Eiweiß-Komplexes.

Krankmachende Mutationen

Der MRN-Komplex besteht aus einer Mre11-Nuklease, einer Rad50-ATPase und dem Kontrollprotein Nbs1. Das Kontrollprotein ist für die Rekrutierung des Proteins ATM zuständig, das für die frühe Schadensregulierung in der Zelle eine zentrale Rolle spielt. „Mit welchen Mechanismen der MRN-Komplex Doppelstrangbrüche erkennt, ist noch unverstanden“, sagt Hopfner, der diese Mechanismen mithilfe von Strukturanalysen untersuchte - und dabei auch der Frage nachging, welche Defekte durch Mutationen des MRN-Komplexes verursacht werden.

„Wir konnten zeigen, dass Mre11 ein flexibles Dimer bildet, das von Nbs1 überbrückt und stabilisiert wird“, erklärt Hopfner. Mutationen einzelner Komponenten des Komplexes lösen ähnliche, aber im Detail unterschiedliche Krankheiten aus, die durch erhöhte Krebsdisposition, Strahlensensitivität und Neurodegeneration geprägt sind. Hopfners Ergebnisse können helfen, die Entstehung dieser Krankheiten besser zu verstehen. Die ATLD-Mutation etwa befindet sich entlang der Mre11-Nbs1 Kontaktfläche und beeinträchtigt vermutlich unter anderem die ATM-Aktivierung durch Destabilisierung der Mre11-Nbs1 Interaktion.

Publikation:
(Nature Structural and Molecular Biology vom 18. Juni 2012)